文書番号 K24-013

ポータブル電波レベル計

MW-2P

取扱説明書

安全に関する注意

安全に関する重要な内容ですので、よくお読みの上、記載事項を必ずお守りください。 本書は当社の電波レベル計をご使用になる方への危害と財産への損害を未然に防ぎ、 製品を安全に正しくご使用いただくための重要な内容を記載しています。 次に示す内容(表示、図記号)をよくご理解の上、本文をお読みください。 本書は必要なときにすぐに参照できるように、使いやすい場所に保管してください。

表示の説明

本書および製品本体における安全に関する表示の意味は次のとおりです。

▲ 危険	この表示を無視して誤った取り扱いをすると、 <u>人が死亡または</u> <u>重傷</u> を負う危険が差し迫って生じることが想定される内容を示
	しています。
▲ 数上	この表示を無視して誤った取り扱いをすると、人が死亡または
	重傷 を負う可能性が想定される内容を示しています。
	この表示を無視して誤った取り扱いをすると、人が傷害を負う
🛛 🥂 注意	可能性が想定される内容、および物的損害の発生が想定される
	内容を示しています。
	機能または特徴に関する取扱いについての情報を示していま
	す。(機器上に表示しています)
2 1 - 51	機能に関する取扱い、又は特徴に関する取扱いの情報への注意
注記	を示しています。
<u> </u>	接地端子を示しています。

銘板

レベル計本体の銘板には重要な事項が記載されています。 記載内容をご確認の上、ご使用ください。

- ① 製品コード
- ② 製造年月
- ③ 製造番号
- ④ 工事設計認証番号
- ⑤ QRコード (当社HPへのリンク)

はじめに

このたびは当社の電波レベル計をお買い上げ頂きまして、誠にありがとうございました。こ の取扱説明書は電波レベル計の操作方法などについて詳しく説明してあります。 本書の内容を十分ご理解のうえ、正しくご使用ください。

取扱説明書等の遵守事項

この取扱説明書等について守っていただきたい事項は以下のとおりです。

- 1) この取扱説明書は実際に本機器を取り扱う方々の手元に確実に届けてください。
- 2) この取扱説明書には重要なことが記載されています。本機器を操作の際は必ず本書を 最後まで熟読し、ご理解の後に行ってください。
- 3) この取扱説明書は、いつでも取り出して読めるように、保管担当者と安全な保管場所 を決め大切に保管してください。
- 4) この取扱説明書を紛失した場合には、当社営業所等に連絡し取扱説明書を補充してく ださい。なお、その場合の取扱説明書は有料です。
- 5) 本機器の銘板が損傷している場合には、当社営業所等にご連絡ください。
- 本書の内容の全部または一部を無断で転載、転送、複製することは禁止されています。

取扱説明書等の注意事項

- この取扱説明書は本機器の標準仕様に基づき作成されています。お客様のお手元の承認図面と異なる記述内容が本書に記載されている場合、承認図面の記述を優先とさせていただきます。
- 2) 本書は本機器の操作方法、機能、および性能の詳細について説明するものであり、お 客様の特定の用途への適合を保証するものではありません。
- 3) 本書の内容は、将来予告無く変更されることがあります。
- 4) 本書の内容に関しては万全を期しておりますが、記載に関して万一ご不審の点や間違い、記載もれなどお気づきのことがありましたら、当社またはお買い求めの代理店までご連絡ください。
- 5) 機能や性能に関して影響の無い仕様変更、構造変更、および使用する部品の変更につきましては、その度ごとの本書改訂が行われない場合があります。ご了承ください。
- 6) 本書で使用されている会社名、商品名(商号)は、各社の登録商標または商標です。また、本文中および図中では、TM、Rマークは表記していません。

安全のための禁止事項および注意事項

安全のため、以下の事項を守ってください。

<u> ・</u> 警告

- ・本書の安全に関する指示を守ってください。指示事項に反して本機器を扱った場合、 安全性を保証できません。
- ・当社以外による本機器の改造を固く禁止します。改造を原因とする損害や不具合等に ついて、当社は一切の責任を負いません。

🕂 警告

電池の使い方を誤ると、電池が漏液、発熱、破裂したり、ケガや機器故障の原因となり ます。

- ・ 電池の電解液が目に入ったときは、失明など障害のおそれがありますので、こすらずにすぐに水道水などの多量のきれいな水で充分に洗ったあと、医師の治療を受けてください。
- ・ 電池を火の中に入れたり、加熱、分解、改造しないでください。絶縁物やガス排出 弁などを損傷させたりして、電池を漏液,発熱,破裂させるおそれがあります
- ・ 電池の外装ラベルをはがしたり、傷つけたりしないでください。

この他、ご使用される電池の安全に関する注意事項を遵守してください。

🥂 注意

本機器を運搬の際には、落下により人体を損傷することのないよう十分ご注意ください。

<u> (</u>注意

本機器は防爆仕様ではないため、危険場所では使用しないでください。

🥂 注意

本機器では耐候性樹脂素材を使用しておりますが、設置する環境により劣化状態は異なりますので年1回程度の状態確認をお勧めします。

機器保護のための禁止事項および注意事項

本機器の保護のため、以下の事項を守ってください。

4	⚠ 注意
•	 機器を落とすなど、衝撃を与えないでください。電池の発火原因となります。
•	・ 振動のあるところに設置しないでください。
•	・ 仕様の動作環境(周囲温度など)の範囲でご使用ください。
•	・ 所定の電池をご使用ください。
•	 新旧の電池及び充電した電池と放電した電池を混用してご使用しないでください。
•	・ 種類、容量、銘柄の違う電池を混ぜてご使用しないでください。
•	・ 本体の押ボタンスイッチ部のネジを緩めたり、分解したりしないでください。
•	・ 機器の分解や改造は絶対に行わないでください。機器に異常が生じた際にはお買い
	求めの代理店へご連絡ください。
•	・ 使用後は、本機器の押ボタンスイッチを切ってください。
•	 長期間使用しない場合は、本機器から電池を取り外し保管してください。
•	・ 機器の輸送について以下の項目を守ってください。
	a) 輸送の際は仕様の温度範囲を守ってください。
	b) 輸送の際は電池を外してください。
	c) 出荷時の梱包状態にて輸送を行ってください。
•	・ 機器の保管について以下の項目を守ってください。
	a) 保管の際は仕様の温度範囲を守ってください。
	b) 直射日光の当たる場所は避けてください。
	c) 振動や衝撃が加わらないようにしてください。
	d) 腐食性ガスの存在する場所は避けてください。

e) 高湿度の場所は避けてください。

以下の全ての事項を遵守してください。遵守していただけない場合には、測定不能、あるい は誤った計測値を表示または出力することがあります。

	、注意
•	本書に記載の使用条件を守ってください。
•	仕様書などに記載の所定の電池、周囲温度の範囲でご使用ください。
•	機器に振動や衝撃が加わらないようにしてください。
•	本体は外来ノイズなどの影響のない場所で使用してください。誤動作または故障の
	原因となります。
•	必要な信号レベルを検知できなかった場合、また異常な計測値が検出された場合に
	は適切な処置を取るようご留意ください。
•	設定値の入力を行う場合には、取扱説明書をよくお読みの上、正しく設定してくだ
	さい。誤った設定を行うと計測不能となるか、あるいは誤った測定値が出力される
	ことがあります。
•	本体蓋は浸水しないようにしっかり締め付けてください。締め付けの過不足にご注

本体蓋は浸水しないようにしっかり締め付けてください。締め付けの過不足にご注意ください。

ご使用上の注意事項

ご使用の前に、形名、仕様(オプション含む)に間違いの無いこと、欠品の無いことをご確認 ください。

安全に関する注意	(1)
表示の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(1)
銘板	(2)
はじめに	(3)
取扱説明書等の遵守事項・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(3)
取扱説明書等の注意事項・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(3)
安全のための禁止事項および注意事項	(4)
機器保護のための禁止事項および注意事項	(5)
使用上の注意事項・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(6)

目次

第1章. 構成	1 - 1
1.1 機器の概要	1-1
1.2 システム構成例	1 - 1
1.3 機器の構造	1 - 1
第2章. 設置	2-1
2.1 注意点	2-1
2.2 取付方法	2-1
2.3 障害物との距離	2-3
2.4測定範囲への影響	2-4
第3章. 配線	3-1
3.1 結線	3-1
3.1.1 電池の取付手順	3-1
3.1.2 本体蓋の取付方法	3-4
3.2 電池	3-4
3.3 機器の起動	3-4
第4章.機器の調整	4-1
第4章. 機器の調整	4-1 4-1
第4章. 機器の調整	4-1 4-1 4-2
第4章.機器の調整	4-1 4-1 4-2 4-2
第4章.機器の調整	4-1 4-1 4-2 4-2 4-2
第4章. 機器の調整 4.1 主な調整項目	$ \begin{array}{r} 4-1 \\ 4-2 \\ 4-2 \\ 4-2 \\ 4-2 \\ 4-3 \end{array} $
第4章. 機器の調整	$\begin{array}{c} 4-1 \\ 4-1 \\ 4-2 \\ 4-2 \\ 4-2 \\ 4-3 \\ 4-4 \end{array}$
第4章.機器の調整	$ \begin{array}{r} 4-1 \\ 4-1 \\ 4-2 \\ 4-2 \\ 4-2 \\ 4-3 \\ 4-4 \\ 4-6 \end{array} $
第4章.機器の調整 4.1 主な調整項目 4.2 調整アプリ 4.2.1 アプリの動作条件 4.2.2 アプリのインストールと起動 4.3 機器検索と接続 4.4 基本画面構成とメニュー 4.4.1 測定値表示 4.4.2 基本情報表示	$\begin{array}{c} 4-1 \\ 4-1 \\ 4-2 \\ 4-2 \\ 4-2 \\ 4-3 \\ 4-4 \\ 4-6 \\ 4-7 \end{array}$
第4章. 機器の調整	$\begin{array}{c} 4-1 \\ 4-1 \\ 4-2 \\ 4-2 \\ 4-2 \\ 4-3 \\ 4-4 \\ 4-6 \\ 4-7 \\ 4-8 \end{array}$
第4章. 機器の調整 4.1 主な調整項目 4.2 調整アプリ 4.2 調整アプリ 4.2.1 アプリの動作条件 4.2.2 アプリのインストールと起動 4.3 機器検索と接続 4.4 基本画面構成とメニュー 4.4.1 測定値表示 4.4.2 基本情報表示 4.4.3 エコーカーブ表示	$\begin{array}{c} 4-1 \\ 4-1 \\ 4-2 \\ 4-2 \\ 4-2 \\ 4-3 \\ 4-4 \\ 4-6 \\ 4-7 \\ 4-8 \\ 4-15 \end{array}$
第4章. 機器の調整4.1 主な調整項目4.2 調整アプリ4.2.1 アプリの動作条件4.2.2 アプリのインストールと起動4.3 機器検索と接続4.4 基本画面構成とメニュー4.4.1 測定値表示4.4.2 基本情報表示4.5 調整(一般)4.5.1 基本設定	$\begin{array}{c} 4-1 \\ 4-1 \\ 4-2 \\ 4-2 \\ 4-3 \\ 4-3 \\ 4-4 \\ 4-6 \\ 4-7 \\ 4-8 \\ 4-15 \\ 4-16 \end{array}$
第4章.機器の調整 4.1 主な調整項目 4.2 調整アプリ 4.2.1 アプリの動作条件 4.2.2 アプリのインストールと起動 4.3 機器検索と接続 4.4 基本画面構成とメニュー 4.4.1 測定値表示 4.4.2 基本情報表示 4.5.1 基本設定 4.5.2 外部I0	$\begin{array}{c} 4-1 \\ 4-1 \\ 4-2 \\ 4-2 \\ 4-2 \\ 4-3 \\ 4-4 \\ 4-6 \\ 4-7 \\ 4-8 \\ 4-15 \\ 4-16 \\ 4-18 \end{array}$
第4章.機器の調整 4.1 主な調整項目 4.2 調整アプリ 4.2 調整アプリ 4.2.1 アプリの動作条件 4.2.2 アプリのインストールと起動 4.3 機器検索と接続 4.4 基本画面構成とメニュー 4.4.1 測定値表示 4.4.2 基本情報表示 4.4.3 エコーカーブ表示 4.5.1 基本設定 4.5.3 流量計算	$\begin{array}{c} 4-1 \\ 4-1 \\ 4-2 \\ 4-2 \\ 4-2 \\ 4-3 \\ 4-4 \\ 4-6 \\ 4-7 \\ 4-8 \\ 4-15 \\ 4-16 \\ 4-18 \\ 4-19 \end{array}$
第4章. 機器の調整4.1 主な調整項目4.2 調整アプリ4.2.1 アプリの動作条件4.2.2 アプリのインストールと起動4.3 機器検索と接続4.4 基本画面構成とメニュー4.4.1 測定値表示4.4.2 基本情報表示4.4.3 エコーカーブ表示4.5.1 基本設定4.5.3 流量計算4.5.4 校正	$\begin{array}{c} 4-1 \\ 4-1 \\ 4-2 \\ 4-2 \\ 4-2 \\ 4-3 \\ 4-4 \\ 4-6 \\ 4-7 \\ 4-8 \\ 4-15 \\ 4-16 \\ 4-18 \\ 4-19 \\ 4-27 \end{array}$
第4章. 機器の調整4.1 主な調整項目4.2 調整アプリ4.2.1 アプリの動作条件4.2.2 アプリのインストールと起動4.3 機器検索と接続4.3 機器検索と接続4.4 基本画面構成とメニュー4.4.1 測定値表示4.4.2 基本情報表示4.4.3 エコーカーブ表示4.5 調整 (一般)4.5.1 基本設定4.5.3 流量計算4.5.4 校正4.5.5 平滑化	$\begin{array}{c} 4-1 \\ 4-1 \\ 4-2 \\ 4-2 \\ 4-2 \\ 4-3 \\ 4-4 \\ 4-6 \\ 4-7 \\ 4-8 \\ 4-15 \\ 4-16 \\ 4-18 \\ 4-19 \\ 4-27 \\ 4-29 \end{array}$

4.6 調整(ファイル)	4-34
4.7 調整(高度)	4-35
4.7.1 ヒストリー	4-36
4.7.2 校正	4-37
4.7.3 サーチ	4-38
4.7.4 異常値除去	4-39
4.7.5 機器接続	4-42
4.8 レポート	4-44
4.9 アプリ設定	4-45
4.9.1 言語設定	4-46
4.9.2 アプリ情報	4-47
4.9.3 PHY Setting	4-48
4.9.4 License	4-49
4.10 ニックネーム登録	4-50
4.11 切断	4-52
4.12 パラメータリスト	4-53
第5章.仕様	5-1
5.1 総合仕様	5-1
5.2 オプション仕様	5-3
5.3 型式コード表	5-3
5.4 外形図	5-4
第6章. 雷波レベル計の測定原理	6-1
6.1 測定原理	6-1
営業所一覧	7-1

第1章. 構成

1.1 機器の概要

本機器は電波の伝搬時間によって、アンテナから測定対象までの距離を求める方式の電波レベル計です。

本機器は電波法施行規則第6条第4項第2号に規定される特定小電力無線局に該当し、適合していることを試験にて確認済のため、日本国内の開放された空間でご使用いただけます。

本機器は持ち運びが容易な機器として設計されています。使用時には安定した場所に設置し、電源投入後は機器から20cm以上離れて測定を行ってください。電源は所定の一次電池または二次電池が使用可能です。電池は機器本体内部に装着し、本体蓋を開けて交換します。

1.2 システム構成

スマートフォンを使用し専用アプリより機器を調整することができます。(図1.2.1)

図1.2.1 システム構成

1.3 機器の構造

本機器は変換器・アンテナー体型です。 アンテナは2種類あり、測定範囲により異なります。(図1.3.1、図1.3.2) 設置のための取付金具はオプションです。

1-2(空白)

第2章. 設置

2.1 注意点

▲ 注意

使用方法や設置場所が適切でない場合には、正しく測定できないことがあります。 使用の際には、本取扱説明書を熟読の上、正しく設置してください。

- 2.2 取付方法
 - 取付金具(オプション)の組立方法
 - ・取付金具の組立には六角レンチ5mmが必要です。
 - ・取付の際には以下の手順で行ってください。
 - 1) 取付金具側凹部とケース側凸部の位置を合わせ、ケース溝部へ取付金具を差し込みます。
 - 2) 同梱の六角穴付きボルトを使用し、取付金具をレベル計本体へ固定します。
 - 3) 取付金具にある4箇所の取付穴を使用し、レベル計本体をご使用になられたい 場所へ設置します。取付金具の寸法は5.4 外形図を参照してください。

■ 使用方法

本機器は指向性が高い電波を使用しています。電波が適切に放射されるように、計 測基準面が液面に垂直となるように使用してください。 傾きの許容目安は±1°です。

図2.2.2 取付角度

2.3 障害物との距離

電波レベル計の性能を最大限発揮させるためには、原則として電波レベル計から放射される電波の放射エリア内に障害物(電波の反射体)が存在しない場所に設置する必要があります。

障害物が放射エリア内に存在する場合には下記の問題が発生する可能性があります。

- ・ 受信電力の低減
- ・ 障害物を測定対象として誤計測

表2.3.1と図2.3.1に示すビーム幅とビーム径を目安としてください。

※ より安定した計測を行うためには、ビーム幅の二倍のエリアに障害物が存在しないよ うに設置することを推奨します。

双2.5.1. C 公開とて 公住				
	ビーム径[m]			
測定距離[m]	30mモデル	50mモデル/100mモデル		
	(ビーム幅=6°)	(ビーム幅=3°)		
5	0.52	0.26		
10	1.05	0.52		
15	1.57	0.79		
30	3.14	1.57		
50	-	2.62		
100	_	5.24		

表2.3.1. ビーム幅とビーム径

図2.3.1 ビーム径

2.4 測定範囲への影響

以下の場合に電波の受信電力が小さくなり、計測範囲の低減または測定性能へ影響を及 ぼします。

- (1) 放射エリア内に障害物がある場合
- (2) 電波レベル計が適切に取付けられていない場合
- (3) 荒れた液面、液面に気泡などが発生している状況
- (4) アンテナに付着物がある状況

図2.4.1 測定範囲への影響例

第3章. 配線

3.1 結線

▲ 注意 ・ 電池の付け外しは押ボタンスイッチを 0FF 状態にしてから行ってください。

- ・ 電池の極性を良く確かめて取り付けてください。極性を誤ると機器が動作せず、機器の破損の恐れがあります。
- ・ 電池用電線は端子台から外さないでください。外してしまった場合は正しく結線して ください。(図 3.1.1.3 内部結線を参照してください。)
- 本体蓋を締め付ける際に、締め付けの過不足が無いようにしてください。
 (3.1.2 本体蓋の取付方法を参照してください。)

3.1.1 電池の取付手順

結線の際には以下の手順で行ってください。

- 1) 押ボタンスイッチが OFF 状態になっていることを確認します。
- 2) 本体蓋を外します。
- 3) 電池ケースを持ち上げ、電池ケースに電池(2個)を挿入します。
- 4) 電池に電池スナップを取付けます。
- 5) 電池ケースの開口部を押ボタンスイッチ方向に向け、電池ケースの切欠き部が本 体内のA部(突起部)に嵌るように電池ケースを戻します。 (図 3.1.1.2 電池ケースの取付)
- 6) 電池ケースを軽く回し、回転しないことを確認します。また、機器を正面から見たときに電池が見えないことを確認します。
 (図 3.1.1.3 電池ケース取付の確認)
- 7)本体蓋を取り付けます。

図 3.1.1.1 押ボタンスイッチ操作および電池取付手順

電池ケースを戻す際は、電池用電線を挟まないようご注意ください。

図 3.1.1.2 電池ケースの取付

図 3.1.1.3 電池ケース取付の確認

内部の結線は下図の通りとなります。 電池用電線を外してしまった際には下図の通り結線を行ってください。

図 3.1.1.4 内部結線

3.1.2 本体**蓋**の取付方法

IP 性能を満足するため、以下の事項を遵守してください。

- ・ 本体蓋については、図 3.1.2.1 に示すように 0 リングが見えなくなるまで閉めこ んでください。
- 本体蓋を取付ける際は、ゴミなど異物が付着していないことを確認してください。
- 0リングに傷等の異常を確認した際は、新品の0リングに交換してください。

図 3.1.2.1 本体蓋の取付

3.2 電池

使用電池: 006P形(9V形) 2個

3.3 機器の起動

本機器は、押ボタンスイッチを押下し 0N 状態にすることで、電池から電源供給が開始され、自動的に起動します。

起動後は自動的に計測が開始されますが、設置状況に合わせた設定が行われていない状態では機器に正しい計測結果を出力することができません。

押ボタンスイッチを押下し OFF 状態にすることで、電源供給が停止され機器動作は停止 となります。

本機器の設定操作を行う場合、スマートフォン用のソフトをご使用ください。 詳細は第4章.機器の調整をご参照ください。

第4章.機器の調整

4.1 主な調整項目

計測を正しく行うためには少なくとも下記のパラメータを設定する必要があります。

■ 基本設定

測定環境に応じた設定を行う必要があります。「調整(一般)」画面から「最小計測距離」、「基準距離」、「ゼロ点以下範囲」の値を設定してください。(図 4.1.1)

流量計算の機能をご使用になる場合は、その項目も設定してください。

通常は上記以外のパラメータは必ずしも設定する必要はありませんが、機器が設置される状況によっては設定が必要になる場合があります。

設定・調整の結果は機器内部のメモリに記録され、以後は電源の停止と再供給が行われても、停止 前と同じ設定・調整の結果に基づき動作します。

電波レベル計 MW-2P はスマートフォンを使用(調整アプリが必要)し、設定を行います。

図 4.1.1 基本設定パラメータ図

4.2 調整アプリ

調整アプリ「TKGauge」を使用することにより、スマートフォン上で機器のパラメータ設定や計測値 等の状態監視を行うことができます。通信には Bluetooth Low Energy を使用し、接続無線通信を使用 するため、機器との物理的な接続を行うことなく機器の調整を行えます。

Google Play から「TKGauge」をダウンロードしてください。

4.2.1 アプリの動作条件

通信条件: BLE(Bluetooth Low Energy) 4.2以上※ Long Range モードを使用する際は BLE 5.0以上

上記動作条件を満たす場合でも、使用するスマートフォンや環境によっては通信が不安定になる場 合がありますのでご注意ください。

4.2.2 アプリのインストールと起動

Google Play から調整アプリのインストールを行ってください。インストール方法は Google Play の 指示に従ってください。インストール完了後、表示されたアイコンをタップして「TKGauge」アプリを 起動してください。

アプリをアンインストールする場合には、スマートフォンの操作方法をご確認ください。

4.3 機器検索と接続

スマートフォン上で機器と接続するためには、検索ボタンをタップし、接続可能な機器の検索を行います。(図 4.3.1)

図 4.3.1 機器検索画面(例)

接続可能な機器がある場合は、図4.3.1(b)のように表示されます。6桁の数字は機器の製造番号を 示しています。接続する機器をタップし、続けて「接続」ボタンをタップすると機器への接続が行わ れます。また、初回の接続時にのみ、ペアリング認証が必要です。製品に同梱されているシートに記 載されたパスキーを入力し、認証を完了してください。次回以降の接続では認証は不要です。 また、通信が不安定になった場合は、ペアリング情報を削除すると改善される可能性があります。

4.4 基本画面構成とメニュー

接続に成功すると以下の画面が表示されます。(図 4.4.1)

23:25 ½ ⁶ 1		≵ 🗵 🕬 100։	23:36 ½	9		՝ 🛪 🕬 100 տ
			調整(一般	段) 🕨 🕨		
	(3) BASIC	4 GRAPH	調整(フ:	ァイル)	sic	GRAPH
لمبتد 27.0 لمبتد م	27.022	dB degC mA dB degC m3/h	、 調整(高度 レポート マプロジ	度) →	m mA m3/h 0.830	dB degC m mA dB degC m3/h
			ニックネ	マーム登録		
Model S/N			機器接続			
FW Ver(Ctrl) FW Ver(RF) FW Ver(BLE)			メイン画	面へ戻る		
基準距離 ゼロ点以下範囲 最小計測距離 最大測定距離	31.00 m 0.00 m 0.17 m 30 m		切 断 ゼロ点 最小計 最大測	以下範囲 ·測距離 定距離	31.00 m 0.00 m 0.17 m 30 m	n
		再読込み				再読込み
•						
	(a)				(b)	

図 4.4.1 接続後の画面(BASIC 画面)(例)

① メニューボタン

- ② LIST タブ
- ③ BASIC タブ
- : 測定した値がリスト表示されます。 : 測定した値や機器情報が表示されます。
- ④ GRAPH タブ
 - : エコーカーブの確認やノイズテーブル設定を行うことができます。

: 機器の設定値やアプリ情報等を確認することができます。

メニューボタンをタップすると図 4.4.1(b)のようにメニューが表示されます。図 4.4.1(a)の画面 に戻る場合には、「メイン画面へ戻る」ボタンをタップします。各メニューの詳細を次ページ以降に記 載します。

②~④のタブの表示例を示します。(図 4.4.2)

(b) BASIC 画面 図 4.4.2 タブ(例)

4.4.1 測定値表示

「LIST」画面では、機器の全ての測定値を確認することができます。

23:36 🜿 🖱		*	🗵 🚱 100%
:			
LIST	BASIC		GRAPH
距离性		0.170	m
レベル		30.830	m
レベル(オフ	セット)	30.830	m
流量		0.00	m3/h
アナログ電泳		20.443	mA
信号強度		52	dB
機器内温度		31	degC
•	۲		

図 4.4.1.1 LIST 画面(例)

距離

レベル

- : 計測した距離値が表示されます。
- : 計測した距離値から算出したレベル値が表示されます。
 : 計測した距離値から算出したレベル値(オフセッ)

ト設定値が加算された値)が表示されます。 : 計測した距離値から算出した流量値が表示され

レベル(オフセット)

流量

- アナログ電流出力 信号強度 機器内温度
- : MW-2P では使用できません。

ます。

- : 測定対象の信号強度値が表示されます。
- : 機器の内部温度値が表示されます。

4.4.2 基本情報表示

「BASIC」画面では、機器の測定値と基本情報を確認することができます。機器の測定値は2種類の 計測値を同時に表示することができます。

図 4.4.2.1 BASIC 画面(例)

それぞれのプルダウンメニューをタップし(図 4.4.2.1(a))、項目を選択することで表示する計測値 を変更することができます。(図 4.4.2.1(b))

4.4.3 エコーカーブ表示

「GRAPH」画面では、エコーカーブの確認とノイズテーブルの設定を行うことができます。

■ エコーカーブとノイズテーブルの確認

図 4.4.3.1 エコーカーブとノイズテーブルの表示(例)

図 4.4.3.1(a)の画面の「エコー取得」ボタンをタップすると、エコーカーブとノイズテーブルのデ ータが機器から読み出され(図 4.4.3.1(b))、グラフが更新されます。(図 4.4.3.1(c))

■ ノイズテーブルの設定

ノイズテーブルの更新方法は3種類の中から選択できます。

自動 : 現在の計測環境に応じて機器側でノイズテーブルが自動作成され、内部に保存 されます。ノイズテーブルを自動で設定する場合には、「自動ノイズテーブ ル」ボタンをタップしてください。設定後は、「エコー取得」ボタンをタップ し、ノイズテーブルを読み出してください。

手動
 : 調整アプリ上で編集したノイズテーブルを機器に書き込みます。
 ノイズテーブルを手動で設定する場合には、最初にグラフ上でノイズテーブルの編集を行ってください。ノイズテーブルを編集するには、ノイズテーブルの線上に表示されたポイントを長押しした後にドラッグし、ポイントの位置を変更します。(図 4.4.3.2(a))
 ノイズテーブル全体を上下にオフセットしたい場合には「4」ボタンを長押しした後にドラッグします。(図 4.4.3.2(b))
 ノイズテーブルの編集後、「ノイズテーブル設定」ボタンをタップすると、ノイズテーブルデータが機器に書き込まれます。

初期化
 : ノイズテーブルが機器側で初期化され、内部に保存されます。
 ノイズテーブルの初期化を行う場合には、「ノイズテーブル初期化」ボタンを
 タップしてください。初期化後、ノイズテーブル設定は工場出荷時の状態に復
 元され、近距離を除き値が0[dB]に設定されます。設定後は、「エコー取得」ボ
 タンをタップし、ノイズテーブルを読み出してください。

■ その他の機能

エコーリストの確認、ノイズマージンの設定、サーチの実行を行うことができます。

エコーリスト

エコーカーブにはエコーの種類を表すマーカーが表示されます。図 4.4.3.3(a)の画面の「エコーリスト」ボタンをタップすると、マーカーの詳細を確認することができます。

表示される値は検出されたエコーのピーク情報です。(最大10点)

- エコーリストは『距離[m],信号強度[dB],ステータス』の順に表示されています。
- ステータスの値は0:測定対象からのエコー/1:障害物等からのエコー/2:ダブルバウンスエコー/他:判別不能の異常エコーを示しています。

21:57 🖞 😌		\$ 🗵 🕬 100%	21:50 🌿 🕾		∦ 🗵 🕬 100⊾
:			:		
LIST	BASIC	GRAPH	LIST	BASIC	GRAPH
レベル	v		レベル	•	
29).791 m mA	dB degC	29	.791 ^m "	
dBO			480		_
110			Echo Lis	st	_
90			1.3, 40, 0 4.1, 35, 1		_
80			5.2, 35, 1 6.0, 36, 1 6.0, 22, 1		_
70			700, 0, 0, -1		_
60			60 0.0, 0, -1 0.0, 0, -1		_
40 77			0.0, 0, -1		_
9.9 ⁰					ок
	\wedge		20		_
10 JI III JIII	אנירקי שנייק	N. D.L.U.		n mineranian	******
0 <u>9</u>	ng 0 20.0 m			n 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	
エコー 取得	取得 エコー 中止 リスト	ノイズ マージン 設定	エコー 取得	取得 エコ 中止 リス	ー ノイズ マージン ト 設定
サーチ	ノイズ 自動 テーブル ノイズ 設定 テーブル	ノイズ テーブル レ 初期化	サーチ	ノイズ 自動 テーブル ノイ 設定 テーブ	カ ノイズ ズ テーブル ブル 初期化
•	۲		•		
	(a)			(b)	

図 4.4.3.3 エコーリストの確認

ノイズマージン(第1閾値)

エコーカーブにはエコー判定に使用される第1閾値(緑の線)が表示されます。第1閾値以下のエコ ーは検出されません。

第1閾値を変更するためには図4.4.3.4(a)の画面の「ノイズマージン設定」ボタンをタップし、ノ イズマージンの値を変更します。第1閾値はノイズマージンの値を基に決定されます。

計算式:

第1閾値 = 10 + ノイズマージン [dB]

図 4.4.3.4 ノイズマージンの設定

<u>サーチの実行</u>

測定対象を消失した場合には、サーチの実行が有効です。図 4.4.3.5の画面の「サーチ」ボタンを タップすると、測定対象からのエコーを再探索します。

また、ノイズテーブル設定後は、サーチを行ってください。

図 4.4.3.5 サーチの実行

■ エコーカーブとノイズテーブル

エコーカーブは、反射エコーの距離と信号強度を確認できる波形データです。

ノイズは第1閾値によってマスクされます。第1閾値のレベルはノイズマージン設定により変更することができます。(図 4.4.3.6)

測定環境によっては、測定対象エコー以外の障害物エコーを誤検出する場合があります。その場合 には、ノイズテーブルを用いて障害物エコーをマスクしてください。(図 4.4.3.6)

図 4.4.3.6 障害物エコーとノイズのマスク

ノイズテーブルと第1閾値を重ねた最大点を繋いだ線(図 4.4.3.6の太い破線)より小さいエコーは 測定対象から除外されます。障害物エコーよりもノイズテーブルを高く設定することにより、誤計測 を防止することができます。

※ ノイズマージン及びノイズテーブルの有効な設定範囲については 4.12 パラメータリストをご参照 ください。

4.5 調整(一般)

メニューの「調整(一般)」では、機器の一般的なパラメータ調整を行うことができます。「調整(一般)」ボタンをタップすると、一般的なパラメータ調整を行うためのメニューが表示されます。 (図 4.5.1)

図 4.5.1 調整(一般)画面(例)

基本設定	則定環境に応じたパラメータの設定	
外部 I0	計測出力値関連パラメータの設定	
流量計算	流量計算関連パラメータの設定	
校正	計測値に対する補正関連パラメータ0	D設定
平滑化	計測値に対するフィルタ関連パラメ-	-タの設定
機器情報	幾器の状態を表すステータスの表示	
	幾器に関する情報の設定、表示	
機器接続	幾器接続関連パラメータの設定	

4.5.1 基本設定

「基本設定」画面では、測定環境に応じたパラメータの読み出し/書き込みを行うことができます。機器を正常に動作させるために、このパラメータ設定を必ず行ってください。

図 4.5.1.1 基本設定画面(例)

図 4.5.1.1(a)の画面の「基本設定」ボタンをタップすると、図 4.5.1.1(b)の画面が表示されます。 「保存」ボタンをタップすると画面に表示されているパラメータ値が機器に書き込まれます。

- 表示オフセット : 調整ソフト上で表示する計測値に、設定したオフセット値が加算されます。
- 最小計測距離
 : 測定したい、最も近い距離を設定します。
 測定対象が最小計測距離よりも近い位置にあるとき、計測値は最小計測距離を
 表示します。精度を保証する最小計測距離につきましては、第5章「5.1 総合
 仕様 -表5.1.1 総合仕様」の測定範囲をご参照ください。
- 基準距離 : 計測基準面からゼロレベル(0.000m)までの距離を設定します。
- ゼロ点以下範囲 : ゼロレベルから底面までの距離を設定します。
- ※ 『基準距離 + ゼロ点以下範囲』を超える距離に測定対象がある場合、測定対象は検出されません。
- ※ 特別な場合を除き、『基準距離 + ゼロ点以下範囲』が第5章「5.1 総合仕様 表 5.1.1 総合仕 様」の測定範囲を超えないようにしてください。
4.5.2 外部 IO

「外部 IO」画面では、Dynamic Variables の読み出し/書き込みおよび出力距離値のシミュレーションを行うことができます。

図 4.5.2.1 外部 IO 画面(MW-2P) (例)

PV	: MW-2P では使用していません。
SV	: MW-2P では使用していません。
TV	: MW-2P では使用していません。
QV	: MW-2P では使用していません。
固定計測距離出力	: 指定した値に出力距離値[m]を固定します。
	※ 使用後は 0.0 (計測値に応じた距離出力)に設定し、固定計測距離出力
	を解除してください。

4.5.3 流量計算

「流量計算」画面では、機器で流量計測を行うために必要なパラメータの読み出し/書き込みを行 うことができます。

図 4.5.3.1 流量計算画面(例)

図 4.5.3.1(a)の画面の「流量計算」ボタンをタップすると、図 4.5.3.1(b)の画面が表示されます。 「保存」ボタンをタップすると画面に表示されているパラメータ値が機器に書き込まれます。 ・共通

流量計算方法: 流量計算方式を選択します。
※ 堰において「堰 JIS B 8302」の適用範囲を超えた場合は
「堰 JIS K0094」を選択してください流量単位: 計測する流量単位を選択します。

流量計算方式を選択後、各流量計算方式のパラメータを設定します。

・堰 JIS B8302 ※表 4.5.3.1 参照
堰の種類 : 堰の形状
水路の幅 : 堰の水路の幅(B)
切欠き幅 : 堰の幅(b)
動粘性係数 : 流体の動粘性係数(v)
切欠きまでの高さ : 堰の切欠までの高さ(D)

・堰 JIS K0094	※表 4.5.3.2 参照
堰の種類	: 堰の形状
水路の幅	: 堰の水路の幅(B)
切欠き幅	: 堰の幅(b)

- ・フリューム JIS ※表 4.5.3.3 参照 フリュームの種類 : パーシャルフリュームの呼び径(JIS B 7553)
- ・ユーザー定義
- ポイント数 : 流量テーブルの補正点数
- 流量テーブル : 流量テーブル(レベル値、流量値)
- ※ レベル値は昇順に並ぶように設定してください。(図 4.5.3.2)

〇:正しい例		×: 誤~	った例]
9:44 5	券 ⊠ ☞⊉ 100%	9:46 5	= 1 /m/r	≵ ⊠ ԹԴ100։
← 流重計昇		← 流重	計昇	
流量計算方法	ユーザー定義 🔹	流量計算方法		ユーザー定義 🔹
流量単位	m3/h 👻	流量単位		m3/h 👻
	保存 キャンセル			保存 キャンセル
ポイント数	3	ポイント数		3
Num Level	Flow	Num	Level	Flow
1 0.100	10.000	1	0.100	10.000
2 0.200	20.000	2	0.300	30.000
3 0.300	30.000	3	0.200	20.000
4 0.000	0.000	4	0.000	0.000
5 0.000	0.000	5	0.000	0.000
6 0.000	0.000	6	0.000	0.000
7 0.000	0.000	7	0.000	0.000
8 0.000	0.000	8	0.000	0.000
9 0.000	0.000	9	0.000	0.000
10 0.000	0.000	10	0.000	0.000
FILE READ	保存	FILE READ		保存
•		•	۲	

図 4.5.3.2 ユーザー定義設定

		JIS B 8302:2022	
		流量式	適用範囲
	60°	$Q = 0.577 Kh^{5/2}$	$B=0.44~\sim~1.0~[m]$
60 度 二		$K = 83 + \frac{1.978}{BR^{1/2}}$	$h=0.04~\sim~0.12~[m]$
一 角 堰		$R = 0.1 h^{3/2} / v$	$D = 0.1 \sim 0.13 \ [m]$
	B >		
	90°	$Q = Kh^{5/2}$	$B=0.5~\sim~1.2~[m]$
90 度 三	₩.L.	$K = 81.2 + \frac{0.24}{h}$	$D=0.1~\sim~0.75~[m]$
一角堰		$+\left(8.4+\frac{12}{\sqrt{D}}\right)\left(\frac{n}{B}-0.09\right)$	$h = 0.07 \sim 0.26 \ [m]$
	<u>↓</u> B		$h \leq \frac{b}{3}$ [m]
		$Q = Kbh^{3/2}$	$B = 0.5 \sim 6.3 [m]$
匹		$K = 107.1 + \frac{0.177}{h} + 14.2 \frac{h}{D}$	$b=0.15~\sim~5~[m]$
角		-25.7 $\sqrt{\frac{(B-b)h}{DB}}$ $+2.04$ $\sqrt{\frac{B}{D}}$	$D=0.15~\sim~3.5~[m]$
退		N N	$\frac{bD}{B^2} \ge 0.06$
	< B →		$h = 0.03 \sim 0.45\sqrt{h}$ [m]
		$Q = KBhe^{3/2}$	$B \ge 0.5 \ [m]$
全		$D \leq 1 m$	$D=0.3~\sim~2.5~[m]$
幅		$K = 60 \times \frac{2}{3} \sqrt{2g} \left(0.602 + 0.083 \left(\frac{n}{D} \right) \right)$	$h=0.03~\sim~D~[m]$
堰	<u>¥</u> B	$1 m \le D \le 2.5 m$ $K = 60 \times \frac{2}{\sqrt{2\pi}} \left(0.602 + 0.004 (D - 1) + (0.082) \right)$	$h \le 0.8 \ [m]$
	<>	$K = 60 \times \frac{1}{3}\sqrt{2g} \left(0.002 + 0.004(D-1) + (0.085) \right)$	$h \leq \frac{B}{T}$ [m]
		$+ 0.036(D-1))\left(\frac{n}{D}\right)$	4 5
		有効ヘッド he = h + 0.0012[m] 重力加速度 g = 9.80665(m/s ²)	
借	Q:流量 [m ³ /min] b:四 K:流量係数 D: 水	角堰切欠の幅[m] 敗底面上り堰下緑[m]	
77用	B:水路の幅[m] v:重	加強的 $5 7 \times 10^{10}$ 加强的 $5 7 \times 10^{10}$	
考	適用範囲を超えた場合は流量計算 60°三角堰は JIS 規格外であり	算方法を「堰 JIS K0094」に設定してください。 JIS B 8302 内で参考として示すものです。	

表 4.5.3.1 堰の流量式と適用範囲(JIS B 8302)

		JIS K 0094:1994
		流量式
90 度三角堰		Q = 1.404 × h ^{5/2} × 60 トムソンの公式
四角堰		Q = 1.84(b – 0.2h)h ^{3/2} × 60 フランシスの公式
全 幅 堰		Q = 1.84 × B・h ^{3/2} × 60 フランシスの公式
備	Q:流量 [m ³ /min] b:四角 ¹ B:水路の幅[m]	
考		

表 4.5.3.2 堰の流量式(JIS K 0094)

				-									
呼び	w	流量範囲 [m³/h]	А	В	С	D	Е	F	G	к	L	N	流量公式
PF-03	76.2	3~193	311	457	178	259	610	152	305	25	914	57	Q= 635 x Lv ^{1.547} 638 x Lv ^{1.550}
PF-06	152.4	5~398	414	610	394	397	610	305	610	76	1525	114	1372 x Lv ^{1.580}
PF-09	228.6	9~907	587	864	381	575	762	305	457	76	1626	114	1927 x Lv ^{1.530}
PF-10	304.8	11~1641	914	1343	610	845	914	610	914	76	2867	229	2487 x Lv ^{1.522}
PF-15	457.2	15~2508	965	1419	762	1026	914	610	914	76	2943	229	3803 x Lv ^{1.538}
PF-20	609.6	43~3374	1016	1495	914	1207	914	610	914	76	3019	229	5141 x Lv ^{1.550}
PF-30	914.4	62~5138	1118	1645	1219	1572	914	610	914	76	3169	229	7863 x Lv ^{1.566}
PF-40	1219.2	133~6922	1219	1794	1524	1937	914	610	914	76	3318	229	10632 x Lv ^{1.578}
PF-50	1524.0	163~8726	1321	1943	1829	2302	914	610	914	76	3467	229	13436 x Lv ^{1.587}
PF-60	1828.8	265~10551	1422	2092	2134	2667	914	610	914	76	3616	229	16268 x Lv ^{1.595}
PF-70	2133.6	306~12376	1524	2242	2438	3032	914	610	914	76	3766	229	19124 x Lv ^{1.601}
PF-80	2438.4	357~14221	1626	2391	2743	3397	914	610	914	76	3595	229	22002 x Lv ^{1.607}
													O. 法目[3/l-1

表 4.5.3.3 パーシャルフリューム各部寸法と流量公式(JIS B 7553)

Q: 流量[m³/h] Lv: レベル[m]

図 4.5.3.2 パーシャルフリューム

図 4.5.3.3 堰形状(例)

23:41 🖉 🖱	* (🗵 🕪 100%	23:41 🖄 9	≱ 🗷 🖾 100∗
← 流量計算			← 流量計算	
流量計算方法	フリューム	4_J ▼	流量計算方法	ユーザー定義 🔹
流量単位	m3/h	•	流量単位	m3/h 👻
	保存	キャンセル		保存 キャンセル
フリュームの種類	PF-03	•	ポイント数	0
		保存	Num Le	evel Flow
		PRIZ	1 0.00	0.000
			2 0.00	0.000
			3 0.00	0.000
			4 0.00	0.000
			5 0.00	0.000
			6 0.00	0.000
			7 0.00	0.000
			8 0.00	0.000
			9 0.00	0.000
			10 0.00	0.000
			FILE READ	保存
• •			•	
(a)フリ	ューム		(b)コ	ーザー定義

図 4.5.3.4 流量計算方法(例)

4.5.4 校正

「校正」画面では、計測値に対する補正関連パラメータの読み出し/書き込みを行うことができます。

図 4.5.4.1(a)の画面の「校正」ボタンをタップすると、図 4.5.4.1(b)の画面が表示されます。「保存」ボタンをタップすると画面に表示されているパラメータ値が機器に書き込まれます。

オフセット校正 : ユーザーによる(機器設置時)測定距離値に対するゼロ点調整値を設定します。 スパン校正 : ユーザーによる(機器設置時)測定距離値に対するスパン調整値を設定します。

- : ユーザーによる(機器設置時)測定距離値に対するスパン調整値を設定します。 正 : 流量計測値に対するゼロ点調整値を設定します。
- 流量ゼロ点校正 流量スパン校正
- : 流量計測値に対するスパン調整値を設定します。

低流量カット : 流量計測値に対する低流量カット(強制ゼロ出力)値を設定します。

表 4.5.4.1 流量単位毎の入力範囲(低流量カット)

流量単位	最小値	最大値
m ³ /D	0.0	2399976
m ³ /h	0.0	99999
m ³ /min	0.0	1666.65
m^3/s	0.0	27.777

表 4.5.4.2 流量単位毎の入力範囲(流量ゼロ点校正)

流量単位	最小値	最大値
m ³ /D	-2399976	2399976
m ³ /h	-99999	99999
m ³ /min	-1666.65	1666.65
m^3/s	-27.777	27.777

4.5.5 平滑化

「平滑化」画面では、計測値に対するフィルタ関連パラメータの読み出し/書き込みを行うことができます。

図 4.5.5.1(a)の画面の「平滑化」ボタンをタップすると、図 4.5.5.1(b)の画面が表示されます。 「保存」ボタンをタップすると画面に表示されているパラメータ値が機器に書き込まれます。

計測平均時間

: 計測値に対する移動平均時間を設定します。

メディアンフィルタ : 移動平均時間内の計測値の中で、中央値から外れた偏差の大きい値を 取り除くデータ数分の時間を設定します。

※ 但し、以下の場合にはメディアンフィルタは無効となります。

- ・ 移動平均時間の設定値が「2以下」
- ・ メディアンフィルタの設定値が「0」
- ・ メディアンフィルタの設定値が移動平均時間の設定値以上
- · 測定対象未検出時(前値保持出力)

メディアンフィルタの動作(図 4.5.5.2)

- 移動平均時間内の計測データから中央値を決定する。
- 中央値との差が大きい計測データを除外する。このとき、メディアンフィルタの設定値で指定した数の計測データを除外する。
- ・ 残りのデータから測定値の平均を算出する。
- ・ 算出した平均値を最終的な測定値として出力する。

図 4.5.5.2 移動平均時間 5[s]、メディアンフィルタ 2[s]の動作

4.5.6 機器情報

「機器情報」画面では、機器に関する情報の読み出し/書き込み、機器の状態を表すステータスの 読み出しを行うことができます。

図 4.5.6.1 機器情報画面(例)

図 4.5.6.1(a)の画面の「機器情報」ボタンをタップすると、図 4.5.6.1(b)の画面が表示されます。 「保存」ボタンをタップすると画面に表示されているパラメータ値が機器に書き込まれます。

 デバイスステータス(読み) 	出しのみ)
出力電流	: MW-2P では使用していません。常に OK 表示となります。
電流飽和	: MW-2P では使用していません。常に OK 表示となります。
電圧低下	: MW-2P では使用していません。常に OK 表示となります。
Sim 実施中	: 固定距離出力状態が表示されます。
	(固定距離出力:ON/計測値出力:OFF)
機器校正	: 機器の校正状態が表示されます。
	(正常:OK/異常:NG)
測定値出力	: 測定値の出力状態が表示されます。
	(出力:OK/未出力:NG)
機器内部温度	: 機器の内部温度の状態が表示されます。
	(正常:OK/異常:NG)
	※ 機器内部温度が 85℃を超えた場合に異常を通知します。
信号検出	: 信号検出状態が表示されます。
	(検出:OK/未検出:NG)
	※ 異常が発生している場合には、機器の設置状況や基本設定に問題が
	ないかを確認してください
流量計算	: 流量計算の設定状態が表示されます。
	(正常:OK/異常:NG)
	※ 異常が発生している場合には、流量計算方法の堰の設定に問題がな
	いかを確認してください。堰の設定が JIS B 8302 の適用範囲外で
	ある可能性があります。
流量テーブル	: 流量テーブルの設定状態が表示されます。
	(正常:0K/異常:NG)
	※ 異常が発生している場合には、流量計算方法のユーザー定義の設定
	に問題がないかを確認してくたさい。
内部故障	: BLE ユニットの稼働状態が表示されます。
(BLE)	(止常:OK/異常:NG)
内部故障	:制御ユニットの稼働状態が表示されます。
(CTRL)	(止常:OK/ 異常:NG)
内部故障	: 電源ユニットの稼働状態が表示されます。
(Power)	(止吊:UK/ 英吊:NG)
内部政障	: KF 制御ユニットの稼働状態が表示されます。
(KADAR)	(止常:UK/異常:NG)

• 機器情報

型式コード

- ファームウェアバージョン(RF)
- ファームウェアバージョン(CTRL)
- ファームウェアバージョン(BLE)

Configuration Changed Flag (Primary) Configuration Changed Flag (Secondary) Configuration Changed Counter

- 最終調整日(年)
- 最終調整日(月) 最終調整日(日) 製品タグ
- ディスクリプタ
- メッセージ
- ロングタグ
- 機器リセット(パラメータ) 調整値(一般)

機器リセット(パラメータ) 調整値(高度)

- 機器リセット(設定変更フラグ)
- 機器リセット(再起動)

- :機器の型式が表示されます。 (読み出しのみ)
- : RF 制御ユニットのファームウェアバージョンが表示されま す。(読み出しのみ)
- : 制御ユニットのファームウェアバージョンが表示されます。 (読み出しのみ)
- : BLE ユニットのファームウェアバージョンが表示されます。 (読み出しのみ)
- : Primary マスターにより機器の設定値を変更した場合に1が 表示されます。(読み出しのみ)
- : Secondary マスターにより機器の設定値を変更した場合に1 が表示されます。(読み出しのみ)
- : 機器の設定を変更した回数が表示されます。 (読み出しのみ)
- :最後に調整した日(年)を設定します。
- :最後に調整した日(月)を設定します。
- :最後に調整した日(日)を設定します。
- : 通信の識別の際に用いられる文字列を設定します
- ※ 最大8文字、半角大文字と句読記号のみ保存できます。
- : 通信の識別の際に用いられる文字列を設定します。
- ※ 最大 16 文字、半角大文字と句読記号のみ保存できます。 : 通信で用いられる文字列を設定します。
- ※ 最大 32 文字、半角大文字と句読記号のみ保存できます。
- : 通信の識別の際に用いられる文字列を設定します。
- ※ 最大 32 文字、半角英数字と句読記号、EU 圏で使用される文 字のみ保存できます。
- : 調整(一般)で設定した設定値を初期化する場合に「実行」ボ タンをタップしてください。初期化が行われ、工場出荷時の 設定値が復元されます。
- ※ パラメータ初期化後は機器リセット(再起動)を実行してく ださい。
- : 調整(高度)で設定した設定値を初期化する場合に「実行」ボ タンをタップしてください。初期化が行われ、工場出荷時の 設定値が復元されます。
- ※ パラメータ初期化後は機器リセット(再起動)を実行してく ださい。
- : Configuration Changed Flag を初期化する場合に「実行」ボ タンをタップしてください。
- : 機器を再起動する場合に「実行」ボタンをタップしてください。

4.6 調整(ファイル)

「調整(ファイル)」画面では、ファイルを使用して機器のパラメータ調整を行うことができます。

図 4.6.1 調整(ファイル)画面(例)

図 4.6.1(a)の画面の「調整(ファイル)」ボタンをタップすると、図 4.6.1(b)の画面が表示されま す。「開く」または「保存」ボタンをタップするとファイル指定画面に遷移します。

Status	:	処理の進捗状況が表示されます。
Parameter Restore	:	指定したファイルのパラメータ値を機器に書き込みます。
Parameter Download	:	機器からパラメータを読み出し、指定したファイルに書き込みます。

4.7 調整(高度)

メニューの「調整(高度)」では、機器の高度な設定に関するパラメータの読み出し/書き込みを行うことができます。「調整(高度)」ボタンをタップすると、機器の高度な設定を行うためのメニューが表示されます。(図 4.7.1)

「調整(高度)」において調整できるパラメータには計測動作への影響が大きいパラメータが含まれます。これらのパラメータを調整するときは十分に注意してください。基本的には、「調整(一般)」のみの調整を推奨します。

図 4.7.1 調整(高度)画面(例)

ヒストリー	:	動作履歴の確認
校正	:	RF 校正用機器温度の確認
サーチ	:	サーチ関連パラメータの設定
異常値除去	:	異常エコーを除去するためのパラメータの設定
機器接続	:	BLE 関連パラメータの設定

4.7.1 ヒストリー

「ヒストリー」画面では、動作履歴を確認することができます。

図 4.7.1.1 ヒストリー画面(例)

図 4.7.1.1(a)の画面の「ヒストリー」ボタンをタップすると、図 4.7.1.1(b)の画面が表示されます。

電源起動後経過時間	: 初回電源起動からの累計経過時間が表示されます。
	単位は時間です。(読み出しのみ)
電源起動後サーチ回数	: 初回電源起動からの累計サーチ回数が表示されます。
	(読み出しのみ)
最終サーチ後経過時間	: 最終サーチ以降の経過時間が表示されます。
	単位は時間です。(読み出しのみ)

4.7.2 校正

「校正」画面では、RF 校正用機器温度を確認することができます。

図 4.7.2.1 校正画面(例)

図 4.7.2.1(a)の画面の「校正」ボタンをタップすると、図 4.7.2.1(b)の画面が表示されます。

RF 校正用機器温度

: RF 制御ユニットの温度が表示されます。(読み出しのみ) ※ RF 制御ユニット校正時に使用されます。

4.7.3 サーチ

「サーチ」画面では、サーチ関連パラメータの読み出し/書き込みを行うことができます。

図 4.7.3.1 サーチ画面(例)

図 4.7.3.1(a)の画面の「サーチ」ボタンをタップすると、図 4.7.3.1(b)の画面が表示されます。 「保存」ボタンをタップすると画面に表示されているパラメータ値が機器に書き込まれます。 スローサーチ

: 機能の 0N/0FF を設定します。 この機能を 0N に設定すると、液面エコーが検出できない状態がリサーチ遅延時間を経過した場合、直前のエコー消失位置を基準に有効ウィンドウを拡大させて液面エコーをサーチします。

スローサーチ動作の流れ(液面が検出できない場合)

- (1) 液面エコーを消失
- (2) リサーチ遅延時間経過
- (3)「有効ウィンドウ幅の設定値×1/2」ずつ探索範囲を拡大 し、液面エコーを探索(5 ステップ)
- (4) (3)の最大幅で5秒探索
- (5) 全測定範囲を対象としたサーチに移行

リサーチ遅延時間

: 液面エコーを消失し捕捉できない状態が続いた場合に、再 サーチを開始するまでの時間を設定します。

4.7.4 異常値除去

「異常値除去」画面では、異常エコーを除去するためのパラメータの読み出し/書き込みを行うこ とができます。

図 4.7.4.1 異常値除去画面(例)

図 4.7.4.1(a)の画面の「異常値除去」ボタンをタップすると、図 4.7.4.1(b)の画面が表示されます。「保存」ボタンをタップすると画面に表示されているパラメータ値が機器に書き込まれます。

エコー検出モード	: 検出したエコーの中から液面エコーとして識別するエコー (マックスエコー/ファーストエコー)を設定します。
	※ ファーストエコーはダブルバウンスが発生しやすい環境に
	おいて使用します。
有効ウィンドウ幅	:検出エコーに対する有効/異常の判断を行う領域を設定し ます。
	※ 有効ウィンドウ幅設定値の2倍が判定領域です。前回測定
	時の液面エコーを中心として、この範囲内にある検出エコ
	ーを有効と判断します。
ダブルバウンス	: 検出エコーが多重反射位置のエコーである場合に除去する 機能の 0N/0FF を設定します。
ダブルバウンスオフセット	: 検出エコーが多重反射位置のエコーであるかを判定するた
	めの、計測基準面から多重反射位置までのオフセット値を設 定します。
	ダブルバウンス機能が ON の場合のみ有効です。
ダブルバウンスウィンドウ幅	: 検出エコーが多重反射位置のエコーであるかを判定するた
	めの、ウィンドウ幅を設定します。
	ダブルバウンス機能が ON の場合のみ有効です。

4.7.5 機器接続

「機器接続」画面では、BLE 関連パラメータの読み出し/書き込みを行うことができます。

図 4.7.5.1 機器接続設定画面(例)

図 4.7.5.1(a)の画面の「機器接続」ボタンをタップすると、図 4.7.5.1(b)の画面が表示されます。 「保存」ボタンをタップすると画面に表示されているパラメータ値が機器に書き込まれます。 BLE

- : BLE 機能の ON/OFF を設定します。
 - OFF とするとスマートフォンと機器との通信ができなくなり ますのでご注意ください。
- : BLE 通信のブロードキャスターの有効/無効を設定します。 ※ この機能は変更できません。
- : BLE ユニットー制御ユニット間の通信伝送速度を設定します。
- ※ この機能は変更できません。
- : BLE 通信のアドバタイジング動作の間隔を設定します。
- : BLE 通信のアドバタイジング動作のタイムアウトを設定しま す。

BLE 送信電力

BLE 伝送速度

BLE ブロードキャスト有効

BLE アドバタイジング間隔

BLE アドバタイジングタイムアウト

: BLE 通信の送信電力を設定します。

4.8 レポート

「レポート」画面では、機器の設定や測定に関する情報を診断レポートとしてまとめて確認することができます。

図 4.8.1 レポート画面(例)

図 4.8.1(a)の画面の「レポート」ボタンをタップすると、図 4.8.1(b)の画面が表示されます。 「DEVICE CHECK」ボタンをタップすると診断レポートが画面に表示されます。(図 4.8.1(c))

レポートの内容

- 日時
- ・ 機器の基本情報
- 機器ステータス
- · 測定值

4.9 アプリ設定

メニューの「アプリ設定」では、アプリの表示設定やアプリに関する情報確認を行うことができま す。(図 4.9.1)

図 4.9.1 アプリ設定画面(例)

言語設定	: アプリの表示言語設定
アプリ情報	: アプリのバージョン情報表示
PHY Setting	: 長距離通信モードへの切り替え(対応スマートフォンのみ)
License	: アプリのライセンス情報表示

4.9.1 言語設定

「言語設定」画面では、アプリの表示言語を切り替えることができます。

図 4.9.1.1 言語設定画面(例)

図 4.9.1.1(a)の画面の「言語設定」ボタンをタップすると、図 4.9.1.1(b)の画面が表示されます。 「保存」ボタンをタップすると選択されている言語表示に切り替わります。

表示言語の種類

- 日本語
- 英語

4.9.2 アプリ情報

「アプリ情報」画面では、アプリのバージョン情報を確認することができます。

図 4.9.2.1 アプリ情報画面(例)

図 4.9.2.1(a)の画面の「アプリ情報」ボタンをタップすると、図 4.9.2.1(b)の画面が表示されます。

4.9.3 PHY Setting

「PHY Setting」画面は長距離通信に対応したスマートフォンのみ項目が表示されます。「PHY Setting」画面では、長距離通信モードへの切り替えを行うことができます。

図 4.9.3.1 PHY Setting 画面(例)

図 4.9.3.1(a)の画面の「PHY Setting」ボタンをタップすると、図 4.9.3.1(b)の画面が表示されま す。通信距離に依って、2 種類のモードが選択できます。(図 4.9.3.1(c))「保存」ボタンをタップす ると選択したモードに切り替わります。

Normal(1M PHY)	:通常モード。
LongRange(LE CODED PHY)	: 長距離通信モード
	※ 通信距離が長い場合には、このモードを使用してください。
	※ スマートフォンによっては、繋がりにくい場合がありますのでご注意
	ください。

4.9.4 License

「License」画面では、アプリのライセンス情報を確認することができます。

図 4.9.4.1 License 画面(例)

図 4.9.4.1(a)の画面の「License」ボタンをタップすると、図 4.9.4.1(b)の画面が表示されます。

4.10 ニックネーム登録

「ニックネーム登録」画面では、機器に対するニックネームを登録することができます。

図 4.10.1 ニックネーム登録画面(例)

図 4.10.1(a)の画面の「ニックネーム登録」ボタンをタップすると、図 4.10.1(b)の画面が表示され ます。続けて「ニックネーム追加」ボタンをタップすると、ニックネーム入力画面(図 4.10.1(c))が 表示されます。キーボード入力によりニックネームの入力を行い「OK」ボタンをタップすると、機器 ニックネームが登録されます。

図 4.10.2 ニックネーム表示(例)

ニックネームが登録されるとニックネーム確認画面が表示されます。(図 4.10.2(a))ニックネーム を削除する場合には「一」ボタンをタップしてください。(図 4.10.2(b))ニックネーム登録後は、機 器検索画面(図 4.10.2(c))に機器のニックネームが表示されます。

4.11 切断

機器切断時には、メニューの「切断」ボタンをタップします。(図 4.11.1(a))機器切断後は、機器 検索画面に切り替わります。(図 4.11.1(b))

4.12 パラメータリスト

設定項目 単位 入力範囲/選択項目 初期値 表示オフセット $-999.999 \sim 999.999$ 0.000 m 基準距離 $0.000 \sim 999.999$ 30.000 m ゼロ点以下範囲 $0.000 \sim 999.999$ 0.000 m 30mモデル: 0.170 最小計測距離 $0.000 \sim 999.999$ 50mモデル:1 m 100mモデル: 1 レベル 距離 PV レベル 流量 信号強度 レベル 距離 流量 信号強度 機器内部温度 SV 最大流量 距離 流量比(%) 起動からの経過時間 サーチ回数 最終サーチからの経過時間 感度余裕 レベル 距離 流量 信号強度 機器内部温度 ΤV 最大流量 流量 流量比(%) 起動からの経過時間 サーチ回数 最終サーチからの経過時間 感度余裕 レベル 距離 流量 信号強度 機器内部温度 QV 最大流量 信号強度 流量比(%) 起動からの経過時間 サーチ回数 最終サーチからの経過時間 感度余裕 0.000 ~ 999.999 ※0.0を設定した場 固定計測距離出力 合、計測値と連動した距離出力となりま 0.0 m す。 計算なし 堰 JIS B8302 流量計算方法 堰 JIS K0094 計算なし フリューム JIS ユーザー定義

表 4.12 パラメータリストの入力値と初期値
		60°三角堰		
		90°三角堰		
堰の種類	-	四角堰	60° 二角堰	
		全幅堰		
		PF-03		
		PF-06		
		PF-09		
		PF-10		
		PF-15		
		PF-20		
フリュームの種類	-	PF-30	PF-03	
		PF-40		
		PF-50		
		PF-60		
		PF-70		
		PF-80		
		m3/D		
		m3/h		
流量単位	-	m3/min	m3/h	
		m3/s		
	m	$0.000 \sim 999.999$	0.5	
切欠キまでの直さ	m	$\begin{array}{c} 0.000 \\$	0.3	
切欠さよての向き	m	$0.000 \sim 999.999$	0.5	
	m ² /a	$0.000 \sim 999.999$	1	
到竹庄床奴 コーザー字羊 - レベル	m		1	
	Ⅲ (滉切)	999.999 · 999.999	0.000	
	()迭1/() m2 /D	0 ~ 2300076		
ューザー完美」演員	m3/b	$0 \sim 2333310$	0,000	
二 9 足我 加重	m3/min	$0 \sim 1666.65$	0.000	
	m3/m111	$0 \sim 27.777$		
ポイント数	_	$0 \sim 100$	0	
30年2日数 設置後の4m4校正	mΛ	$35 \sim 45$	4.0	
	mA	15.0 0.25.0	20.0	
	m		20.0	
スノビット仪正		0.5 a. 1.5	1.0	
<u> </u>		0.5 ~ 1.5	1.0	
	(速水)	2200076 - 2200076		
法具持った状式	1113/D	-2399910 - 2399910	0.0	
加重セロ点校正	m3/n	-999999 ~ 999999	0.0	
	m3/m111	$-1000.03 \sim 1000.03$		
	1113/S		1	
(爪里 へへ ン 校正)		0.01 ~ 2	1	
	()地切()	0 ~ 2200076		
低法具もいし	m3/D	$0 \sim 2399976$	0.0	
低価重ルット	m3/n	$0 \sim 999999$	0.0	
	m3/m1n	$0 \sim 1000.05$		
制制体实行时间	1113/S		10	
計測恒平均時間	S	$1 \sim 120$	10	
ハフィノマノイルタ フィブニーブローツロ	S	$0 \sim 120$	0	
	an	$0 \sim 80$	0	
ノイ Aマーンン ※1	αB	$0 \sim 10$	10	
アバイススアータス	-	$0 \times 0000 \sim 0 \times FFFF$	0	
型式コード	-	19月) MW-2P-NN2-030-4L		
ファームウェアバーション(RF)	-	19月) V1. 0. 0		
ファームウェアバージョン(CTRL)	-	沙J) V1. 0. 1		
ファームウェアバージョン(BLE)	-	例) V1.0.2		

Configuration Changed Flag	-	$0 \sim 1$	0
Configuration Changed Counter	-	$0 \sim 65535$	0
最終調整日(年)	-	$0 \sim 99$	0
最終調整日(月)	-	$1 \sim 12$	1
最終調整日(日)	_	$1 \sim 31$	1
製品タグ	-	ASCII文字列 ※ 英字の大文字のみの入力が可能です。	
ディスクリプタ	-	ASCII文字列 ※ 英字の大文字のみの入力が可能です。	
メッセージ	-	ASCII文字列 ※ 英字の大文字のみの入力が可能です。	
ロングタグ	_	ASCII文字列 ※ 英数字の入力が可能です。	
マルチドロップモード	-	OFF ON	OFF
デバイス番号	-	$0 \sim 63$	0
プリアンブル個数	_	$5 \sim 20$	5
スローサーチ	-	OFF ON	ON
リサーチ遅延時間	s	$1 \sim 120$	120
エコー検出モード	-	マックスエコーファーストエコー	ファーストエコー
有効ウィンドウ幅	m	$0.000 \sim 999.999$	0.4
	***	OFF	
ダブルバウンス	-	ON	ON
ダブルバウンスオフセット ※1	m	30mモデル : -30.000 ~ 999.999 50mモデル : -50.000 ~ 999.999 100mモデル : -100.000 ~ 999.999	0
ダブルバウンスウィンドウ幅	m	$0.000 \sim 999.999$	0.1
BLE	-	OFF ON	ON
BLE ブロードキャスト	-	無効 有効(選択不可)	無効
BLE 伝送速度	bps	9600 19200(選択不可) 38400(選択不可) 115200(選択不可)	9600
BLE アドバタイジング間隔	-	$0 x 0 0 2 0 \sim 0 x 4 0 0 0$	0x0900
BLE アドバタイジングタイムアウト	s	0 ~ 180 0 : タイムアウトなし	0
BLE 送信電力	dB	$ \begin{array}{c} +4 \\ +3 \\ 0 \\ -4 \\ -8 \\ -12 \\ -16 \\ -20 \\ -30 \\ -40 \end{array} $	0

※1機器に入力範囲外の値を設定した場合、正常に動作しないことがありますのでご注意ください。

第5章. 仕様

5.1 総合仕様

	周波数	77~81GHz			
	測定方式	FMCW レーダー方式			
測定方式	出力電力	電力 ピーク EIRP 平均 EIRP	+10dBm 以下 +34dBm/50MHz 以下 -3dBm/MHz 以下		
	ビーム幅	30m モデル	6°		
	(電力半値幅)	50m モデル 100m モデル	3°		
測定周期		1秒			
最小起動時間		5秒			
トラッキング性能(液面変化速度)		最大 2.5m/s			
消費電流		3.5mA typ. (3.5mA typ. (電源電圧 DC18V, +25℃)		
繰返し性		1mm			
温度依存性		10mmp-p 及び ±3mm/10K以下			
		30m モデル	0.17~30m		
測定範囲		50m モデル	$1 \sim 50 m$		
		100m モデル	$1 \sim 100 {\rm m}$		
		30m モデル	± 2 mm (0. 17 \sim 30m) *2		
測定精度 ^{※1} (静水面)		50m モデル	$\begin{array}{c} \pm 2mm (1 \sim 10m) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
		100m モデル	$ \begin{array}{l} \pm 2 mm \left(1 \sim 10 m \right) \ ^{\otimes 2} \\ \pm 0. \ 02 \% RD \left(10 m \sim 100 m \right) \ ^{\otimes 2} \end{array} $		
	本体筐体	PBT-GF30			
材質	シール材(0 リング)	シリコンゴム(VMQ)			
	アンテナ(レンズ)	PTFE			
	押ボタンスイッチ	ポリアミド樹脂(操作部) 亜鉛ダイカスト(ベゼル)			
	スイッチ取付部	PVC、SUS304、EPDM			

表 5.1.1 総合仕様

質量		30m モデル	約 600g(電池含まず)		
		50m モデル 100m モデル	約 800g(電池含まず)		
定格雷圧		DC18V (006P 雷池 2 個使用)			
電源	電源		DC10. 5~36V		
連続稼働時間		約 50 時間 ^{※3}			
	通信方式	Bluetooth Low Energy (BLE)			
デジタル出力	分解能	1mm			
	最小出力周期	1秒			
表示	表示器	なし			
	測定対象	液体 ^{※4}			
	測定対象温度	$0 \sim +50^{\circ}\mathrm{C}$			
測定理音	耐圧	大気圧			
侧足埰境	周囲温度	電波レベル計 本体	$0 \sim +60^{\circ} \mathrm{C}^{\times 5}$		
		同梱電池	$0 \sim +50^{\circ}\mathrm{C}$		
輸送保管温度		電波レベル計 本体	$-20 \sim +60^{\circ}\mathrm{C}$		
		同梱電池	$-20 \sim +35^{\circ}C$		
保護等級		IPX4			
外形寸法		30m モデル	124(長さ) x 97(幅) x 170(高さ)		
		50m モデル 100m モデル	 124(長さ) x 101(幅) x 237(高さ)		
筐体色		グレー、紺			
機器包装		段ボール梱包			

※1 用語の定義は JIS Z 8101 に準じます。

- ※2 測定環境によっては測定値にオフセットが発生する可能性があります。設置環境に合わせてパラメータ「オフセット校正」により補正を行ってください。
- ※3 同梱電池(オプション品)を満充電して使用、+25℃環境で使用した場合です。
- ※4 水以外の場合、液体の性質によっては最大測定距離が短くなります。また、精度が悪化する可能性があります。
- ※5 ご使用される電池の推奨使用温度範囲がこれより狭い場合、電池の推奨使用温度範囲 が優先されます。

5.2 オプション仕様

衣 5. 2. 1 オノ ノヨマ 山 (1) (1) (1)			
取付金具	無し、または SUS304/SUS316L から選択		
電池	東芝ライフスタイル 6TNH22A または同等品		
電池充電器	東芝ライフスタイル TNHC-622SC または同等品*6		

表 5.2.1 オプション仕様

※6 同梱する電池に対応する充電器をご提供します。

5.3 型式コード表

A 0.0.1 主人中 十 A			
型式コード	認証番号	仕様	
MW-2P-NN2-030-4L	001-A21519	測定範囲:30m モデル	
MW-2P-NN2-050-8L	001-A21520	測定範囲:50m モデル	
MW-2P-NN2-100-8L	001-A21520	測定範囲:100m モデル	

表 5.3.1 型式コード表

5.4 外形図(各部の名称及び寸法)

図 5.4.1 30m モデル外形図

図 5.4.2 取付金具取付図(30m モデル)

図 5.4.3 50m モデル、100m モデル外形図

図 5.4.4 取付金具取付図(50m モデル、100m モデル)

取付方法は第2章 取付方法を参照してください。

図 5.4.5 取付金具(オプション)外形図

図 5.4.6 取付寸法参考図

第6章. 電波レベル計の測定原理

6.1 測定原理

本電波レベル計は FMCW レーダーの原理に基づき、測定対象までの距離を計測します。図 6.1.1 に FMCW レーダーの測定原理を示します。

図 6.1.1 FMCW レーダーの測定原理

図 6.1.1 で示すように、電波レベル計から周波数変調された電波を時刻 t₀で送信します。測定対象 で反射した電波は伝搬時間 Δt だけ遅れた時刻 t₁で受信されます。送信波の周波数は変化しているた め、時刻 t₁における送信波の周波数は f₁となり、時刻 t₁では送信波と受信波の周波数差 Δf が生じ ます。ここで、送信波の周波数は一定で変化させるため、周波数差 Δf と伝搬時間 Δt は比例します。 また、伝搬時間 Δt と測定対象までの距離 L も比例します。

この測定原理を基に、FMCW レーダーはその周波数差 Δf を計測することにより、伝搬時間 Δt を求め、測定対象までの距離 L を算出します。

営業所一覧

本機器の故障や修理等のご相談は最寄りの営業所までご連絡ください。

- 本社/東京営業所 〒144-8551 東京都大田区南蒲田2-16-46 TEL 03-3737-8621 FAX 03-3737-8665
- 札幌営業所 〒003-0802 北海道札幌市白石区菊水二条2-2-12 藤井ビル菊水Ⅳ TEL 011-816-6291 FAX 011-816-6296
- 仙台営業所 〒983-0852 宮城県仙台市宮城野区榴岡4-12-12 L.Biz仙台 TEL 022-295-5910 FAX 022-295-6041
- 北関東営業所 〒327-0816 栃木県佐野市栄町1-1 佐野工場内 TEL 0283-21-0341 FAX 0283-21-0175
- 名古屋営業所 〒461-0005 愛知県名古屋市東区東桜1-14-11 DPスクエア東桜 8F TEL 052-228-3996 FAX 052-228-3995
- 大阪営業所 〒532-0004 大阪府大阪市淀川区西宮原1-7-26 TEL 06-6150-6602 FAX 06-6150-6610
- 広島営業所 〒730-0041 広島県広島市中区小町3-19リファレンス広島小町ビル TEL 082-249-4661 FAX 082-241-7199
- 福岡営業所 〒812-0011 福岡県福岡市博多区博多駅前4-8-15博多鳳城ビル5F TEL 092-414-7280 FAX 092-414-7281

文書番号 K24-013

ポータブル電波レベル計 MW-2P 取扱説明書 2024 年 9 月 初版発行

発行 東京計器株式会社 計測機器システムカンパニー 〒144-8551 東京都大田区南蒲田 2-16-46 TEL 03-3737-8621 FAX 03-3737-8665 URL https://www.tokyokeiki.jp/

当社の許可なくしてこの取扱説明書を転載複 写することを禁止します。 この取扱説明書の内容は予告なく変更される 場合があります。